CS275 Discrete Mathematics

Gongbo "**Tony**" Liang Fourth year PhD student in CS gb.liang@uky.edu liang@cs.uky.edu

Section 5.2 Strong Induction and Well-Ordering

	Mathematical Induction	Strong Induction
Basis Step	We verify P(1) is true	We verify P(1) is true
Inductive Step	 For all positive integers k, we assume P(k) is true Show P(k + 1) is true 	We show that the conditional statement $[P(1)\land P(2)\land P(3)\land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

A modified version of Strong Induction

Let *b* be a fixed integer ant let *j* be a fixed positive integer. To prove P(n) is true for all $n \ge b$, we complete the following two steps:

- Basis step:
 - Verify that the propositions P(b), P(b+1), P(b+2), ..., P(b+j) are ture
- Inductive step:
 - Show that the conditional statement $[P(1)\land P(2)\land P(3)\land \dots \land P(k)] \rightarrow P(k+1)$ is true for every integer $k \ge b+j$.

Let P(n) be the statement that a postage of n cents can be formed using just 3-cents stamps and 5-cent stamps. Proof that P(n) is true for $n \ge 8$.

a) Show that the statements P(8), P(9), and P(10) are true

- a) P(8) is true because 3¢+5¢=8¢
- b) P(9) is true because 3¢+3¢+3¢=9¢
- c) P(10) is true because 5 c + 5 c = 10 c

Let P(n) be the statement that a postage of n cents can be formed using just 3-cents stamps and 5-cent stamps. Proof that P(n) is true for $n \ge 8$.

b) What is the inductive hypothesis of the proof?

- The statement that using just 3c and 5c stamps we can form jc postage for all j with $8 \le j \le k$

c) What do you need to prove in the inductive step?

Assume the inductive hypothesis, we can form (k+1)¢ postage using just
 3¢ and 5¢ stamps.

Let P(n) be the statement that a postage of ncents can be formed using just 3-cents stamps and 5-cent stamps. Proof that P(n) is true for $n \ge 8$. d) Complete the inductive step for $k \ge 10$

- Because $k \ge 10$, we know that P(k-2) is true
- We can form (k-2)¢ of postage with 3¢ and 5¢ steps
- (k+1)¢ of postage is (k-2)¢ + 3¢
- Since, $[P(8)\land P(9)\land P(10)\land \dots \land P(k)] \rightarrow P(k+1)$ is true, the statement is true.

a) Determine which amounts of postage can be formed using just 4¢ and 11¢ stamps

b) Prove your answer using <u>mathematical</u> <u>induction</u>. Be sure to state explicitly your inductive hypothesis in the inductive step.

c) Prove your answer using *strong induction*.

a) Determine which amounts of postage can be formed using just 4¢ and 11¢ stamps.

- 4, 8, 11, 12, 15, 16, 19, 20, 22, 23, 24, 26, 27, 28, and all values greater than or equal to 30.

 b) Prove your answer using *mathematical induction*.
 Be sure to state explicitly your inductive hypothesis in the inductive step

- Let P(n) be the statement that "we can form $n \notin of$ postage using just $4 \notin and 11 \notin stamps$. We want to prove that P(n) is true for all $n \ge 30$.
- Basic step:
 - P(30) = 11+11+4+4 True
- Inductive hypothesis:
 - Assume that we can form $k \notin c$ of postage, we ill show how to form $(k+1) \notin c$
- Inductive step:
 - If the k¢, included an 11¢ stamp, then, replace it by three 4¢ stamps. We can form (k+1)¢ of postage.
 - Otherwise, k¢ was formed from just 4¢ stamps. Because k≥30, there must be at least eight 4¢ stamps. Replace the eight 4¢ with three 11¢ stamps. We can form (k+1)¢ of postage.

c) Prove your answer using *strong induction*.

- Let P(n) be the statement that "we can form $n \notin$ of postage using just $4 \notin$ and $11 \notin$ stamps. We want to prove that P(n) is true for all $n \ge 30$.

- Basic step:
 - P(30) = 11+11+4+4
 - P(31) = 11 + 4 + 4 + 4 + 4
 - P(32) = 4 + 4 + 4 + 4 + 4 + 4 + 4
 - P(33) = 11+11+11
- Inductive hypothesis:
 - P(j) is true for all *j* with 30≤j≤k, where k is an arbitrary integer greater than or equal to 33

c) Prove your answer using *strong induction*.

- Let P(n) be the statement that "we can form nc of postage using just 4c and 11c stamps. We want to prove that P(n) is true for all $n \ge 30$.
- Inductive step:
 - Because $k-3 \ge 30$, we know that P(k-3) is true.
 - P(j) is true for all j with 30≤j≤k, where k is an arbitrary integer greater than or equal to 33
 - We can form (k-3)¢ of postage with only 4¢ and 11¢ stamps
 - Put one more 4¢ stamp, we can form (k+1)¢ of postage

Which amounts of money can be formed using just \$2 and \$5 bills? Prove your answer using strong induction.

- We can form any amounts expect \$1 and \$3
- Prove
 - Let P(n) be the statement that we can form \$n using just \$2 and \$5 bills. We want to prove that P(n) is true for all n≥5
 - It is clear that we cannot for \$1 and \$3, and it is trivial that we can form \$2 and \$4.

Which amounts of money can be formed using just \$2 and \$5 bills? Prove your answer using strong induction.

- Base step
 - P(5) = 5
 - P(6) = 2+2+2
- Inductive hypothesis
 - Assume P(j) is true for all j with $5 \le j \le k$, where k is an arbitrary integer grater than or equal to 6. We want to show that P(k+1) is true
- Inductive step
 - Because k-1 ≥ 5, we know that P(k-1) is true. We can add a \$2 bill to \$(k-1) to form a \$(k+1) amount.

Section 5.3 Recursive Definitions and Structural Induction

Recursive function

- Basic step:
 - Specify the value of the function at zero
- Recursive step:
 - Given a rule for finding the value of the function at an integer from its value at smaller integers

Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively: f(0)=1 f(n+1)=3f(n)

- $f(1) = 3f(0) = 3^*1=3$
- $f(2) = 3f(1) = 3^*3=9$
- f(3) = 3f(2) = 3*9=27
- f(4) = 3f(3) = 3*27=81

Find f(1), f(2), f(3), and f(4) if f(n) is defined recursively: f(0)=1 $f(n+1)=f(n)^2+f(n)+1$

- $f(1) = f(0)^2 + f(0) + 1 = 3$
- $f(2) = f(1)^2 + f(1) + 1 = 3^2 + 3 + 1 = 13$
- $f(3) = f(2)^2 + f(2) + 1 = 13^2 + 13 + 1 = 183$
- $f(4) = f(3)^2 + f(3) + 1 = 183^2 + 183 + 1 = 33,673$

Find f(2), f(3), f(4), and f(5) if f(n) is defined recursively: f(0)=-1 f(1)=2 f(n+1)=f(n)+3f(n-1)

$$- f(2) = f(1) + 3f(0) = 2 - 3 = -1$$

-
$$f(3) = f(2)+3f(1) = -1+3 * 2= 5$$

-
$$f(4) = f(3)+3f(2) = 5-3*1 = 2$$

-
$$f(5) = f(4)+3f(3) = 2+3*5=17$$

Determine whether the proposed definition is a valid recursive definition of a function f from the set of nonnegative integers to the set of integers.

- f(0)=0, f(n)=2f(n-2) for n≥1

Not Valid

- f(0)=1, f(n)=f(n-1)-1 for n≥1

Valid

Find the formula of the recursive definition for f(n) when n is a nonnegative integer and prove your formula: **f(0)=1, f(n)=f(n-1)-1 for n≥1**

- We list a few cases:
 - f(1) = 0, f(2) = -1, f(3) = -2, f(4) = -3
 - f(n) = 1-n
- Prove:
 - Basic step: f(1) = 1 1 = 0
 - Inductive step:
 - If f(k) = 1-k, then f(k+1) = f(k)-1=1-k-1=1-(k+1)

Find the formula of the recursive definition for f(n) when n is a nonnegative integer and prove your formula: **f(0)=2, f(1)=3, f(n)=f(n-1)-1 for n≥2**

- List a few cases:
 - f(2) = 2, f(3)=1, f(4)=0, f(5)=-1
 - f(n) = 4-n
- Prove:
 - Basic step: f(2) = 4-2=2, f(3) = 4-3=1
 - Inductive step:
 - If f(k) = 4-k, then f(k+1) = f(k)-1=(4-k)-1=4-(k+1)

Prove that $f_{1+f_{3+}...+f_{n-1}}=f_{2n}$ when *n* is a positive integer

- Let P(n) be "f1+f3+...+ $f_{n-1}=f_{2n}$ "
- Basic step: P(1) = P(2)
- Inductive step:
 - Assume P(k) is true
 - $f1+f3+...+f_{2k-1}+f_{2k+1} = f_{2k}+f_{2k+1} = f_{2k+2} = f_{2(k+1)}$